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A global stability investigation of two-dimensional vertical liquid sheet flows is ex-
perimentally carried out. The motivation is that previous investigations addressed the
study of the local absolute/convective character of such flows, thus they are not able
to predict the actual critical flow Weber number corresponding to sheet rupture. The
objective of the paper is twofold: first, the link between local absolute and global
instabilities is investigated and the measured length of the absolute instability region
is correlated with the non-parallelism parameter (sheet slenderness ratio which is the
reciprocal of the Froude number); then, a criterion to predict the flow Weber number
value at sheet rupture is given for which the critical Weber number is correlated with
Froude and Reynolds numbers. Tests are carried out on liquid (low-concentration
water solutions of surfactants and low-viscosity motor oil) sheets issuing from a nozzle
with a long horizontal exit section in still air under the gravitational field. A major
goal of the experiments is the determination of the vertical location where the local
Weber number equals unity, because this yields the length of the absolute instability
region. This location is determined by observing the standing sinuous waves generated
by an obstacle placed normally to the sheet, and by measuring the angle between the
tangent to the wave at the obstacle and the vertical direction for the minimum liquid
flow rate necessary to maintain the sheet stable (global instability onset).

1. Introduction
Two-dimensional plane jets falling freely under the effect of gravity (liquid sheet

flows) are employed in many industrial applications, which include coating processes
and environment protection in chemical and/or nuclear technology (where sheet
annular configurations are also considered). Such applications are well summarized
in the paper by Finnicum, Weinstein & Ruschak (1993), whereas Chubb et al. (1994)
investigated the sheet flows as low-mass radiating surfaces for Space application. In a
more recent paper Söderberg & Alfredsson (1998) developed a study aimed towards
the paper industry, where a fibre suspension is formed into a plane liquid jet by a
nozzle.

Owing to its increased industrial importance, starting from the fifties research has
been focused on the dynamics and the instability (leading to break-up or rupture)
of the liquid sheets. A quick review of the basic literature follows, starting from the
experimental observations. Brown (1961) studied the behaviour of a plane liquid jet
(curtain) impinging on a moving surface. He found the minimum liquid flow rate to
maintain a stable sheet by observing that equilibrium must be maintained at a free
edge between the inertia forces and the surface tension. When a free edge appears
because of the formation of a hole, such a hole does not grow if the oncoming
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momentum flux is greater than the surface tension force; otherwise it grows and
the curtain disintegrates. His pioneering physical interpretation remains a milestone
for modern theoretical and numerical investigations. Later, as some authors tried
to explain the disagreement between experimental data and results coming from
the temporal mode analysis, Crapper, Dombrowski & Pyott (1975) observed that if
photographs were taken at different times, the wave amplitude was unchanged at
the same distance from the nozzle exit section, thus giving rise to the spatial mode
analysis devoted to this kind of flow. On the other hand, Carlomagno (1974) extended
Lee’s (1963) work on the instability of a film coating a two-dimensional cylinder to
the case of a continuous downflow from the cylinder. Depending on the flow rate
value, different flow regimes were observed: sheets, sheets and discrete vertical jets
(or threadlines), jets, drops. Flow regimes qualitatively similar to those mentioned
above were found by Pritchard (1986), who studied the free-surface class of flows
arising when the fluid is poured over the end of a flat plate into a reservoir below
the plate. These regimes were also observed by Limat et al. (1992) in an experimental
set-up similar to that employed by Lee (1963) and Carlomagno (1974): a horizontal
hollow half-cylinder was supplied with liquid that overflowed, ran over the external
sides and was collected below the cylinder. More recently de Luca & Meola (1995)
analysed the continuous downflow of a liquid from a two-dimensional nozzle and
found basically the same class of flows described above together with a phenomenon,
the Reynolds ridge, that is a peculiarity of the presence of surfactants in the test liquid.
In order to understand the development of free plane jets, Söderberg & Alfredsson
(1998) investigated the basic laminar flow and its stability, both numerically and
experimentally. The experiments showed that the wave instability results in a break-
up of the laminar jet, giving rise to a turbulent jet which appears to contain streaky
structures. They visualized the sheet break-up by means of a particle visualization
technique and observed that the break-up creates streamwise streaks in the plane jet
which are much stronger than streaks originating from the inside of the nozzle.

From the theoretical point of view, Squire (1953) and later Hagerty & Shea
(1955) performed an inviscid analysis on a sheet of uniform thickness and found
that instability occurs if the Weber number (ratio of inertia forces to liquid surface
tension) is greater than unity. Subsequent papers took into account the effects of
liquid viscosity. Crapper, Dombrowski & Jepson (1975) demonstrated that viscosity
has no effect on the initial stages of wave growth. Lin (1981) asserted that viscosity
has the dual roles of increasing both the amplification rate and the damping rate of
the disturbances. This result was then confirmed by Lin, Lian & Creighton (1990) who
found that, contrary to the case of a round jet (Lin & Lian 1989), the critical Weber
number equal to unity is insensitive to the gas-to-liquid density ratio and the Reynolds
number. These authors asserted also that the sinuous (or antisymmetric) modes of
disturbances are convectively unstable for Weber numbers above the critical one equal
to unity, while they are pseudo-absolutely unstable below the critical Weber number
(the term pseudo-absolute instability was used to mean that the relevant Green’s
function is bounded but is non-vanishing for all time and all spatial positions). Li &
Tankin (1991) showed that the liquid viscosity introduces an additional temporal mode
which destabilizes a certain range of wavenumbers and is referred to as viscosity-
enhanced instability. De Luca & Costa (1997b), besides some other considerations
which will be discussed later, confirmed substantially the major result of Lin et al.
(1990) but, by employing an inviscid model, found that below the critical Weber the
sheet is fully absolutely unstable with algebraic growth of disturbances. In agreement
with the experimental evidence, they asserted that the sheet break-up is linked to the
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presence of this absolute instability and, following the finding of Crapper et al. (1975),
they conjectured that the liquid viscosity may act to remove the algebraic growth, but
the time after which this occurs could be not sufficient to avoid possible nonlinear
phenomena appearing and breaking up the sheet. Teng, Lin & Chen (1997) included
the effect of viscosity of the ambient gas and confirmed that the critical Weber
number is approximately equal to one and is weakly dependent on the other governing
parameters. Söderberg & Alfredsson (1998) carried out a coupled experimental and
theoretical stability investigation aimed at studying the influence of the relaxation
process of the velocity profile. They considered a parallel flow (i.e. constant sheet
thickness) and employed a temporal linear stability analysis.

In summary, the present state of art of the modelling of liquid sheet flow instability
addresses the absolute or convective character of the instability and takes into account
the non-parallelism of the flow (due to gravity) in an unsatisfactory way. In fact, Lin
et al. (1990), Teng et al. (1997), and de Luca & Costa (1997b), all considered a locally
non-parallel flow, so that they predict the existence of a critical value of the local
Weber number equal to unity, but are not able to predict the vertical location where
this critical value is attained, i.e. they cannot predict the critical flow Weber number.
Hence, the flow conditions producing the sheet rupture remain substantially unknown
and the need to develop the so-called global instability analysis arises clearly from the
above discussion. The concepts of absolute and convective instability in fluid dynamics
are now well established (the reader is referred to the exhaustive paper by Huerre &
Monkewitz 1990); on the other hand, the link between the local absolute instability
and the global instability (producing the basic flow break-up) in non-parallel flows
is currently under study. For the case of incompressible two-dimensional shear flow
Monkewitz, Huerre & Chomaz (1993) demonstrated that the presence of a region
of absolute instability is just a necessary condition for the onset of amplified global
oscillations and specified the order of magnitude of the streamwise length of the
absolute instability region in order for global resonances to occur. All these ideas will
be reviewed in the next section, especially as far as the liquid sheet flows are concerned.

The present work draws its motivation from the above discussion and is aimed to
give a prediction criterion for the sheet rupture; in other words, a global instability
analysis is carried out that is aimed at determining the critical flow Weber number
corresponding to the break-up. The global linear stability analysis of falling capillary
round jets has already been developed by Le Dizès (1997), who found that the global
instability is caused by a region of local absolute instability located near the nozzle.
Yakubenko (1997) studied the inclined round jet for which no region of absolute
instability is found, i.e. the flow is locally convectively unstable at every streamwise
location. To the knowledge of the present author no global instability theory has
been developed for plane liquid sheet flows. Since the major weakness in the past
studies, which included various kinds of flows, is the lack of experimental validation
of the different theoretical developments, the contribution of the present investigation
is that the global stability analysis of plane sheet flows is performed experimentally.
The objective is twofold: first, the link between local absolute and global instabilities
is investigated and the measured length of the absolute instability region is correlated
to the non-parallelism parameter (for the present flow the sheet slenderness ratio that
may be interpreted as the reciprocal of a Froude number); then, a criterion to predict
the flow Weber number value of sheet rupture is given, for which the critical Weber
number is correlated to the Froude and Reynolds numbers.

The paper is organized as follows. Section 2 gives the theoretical background of the
concepts of local and global instabilities, as well as their application to plane liquid
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sheet flows. Section 2 also examines some characteristics of the basic laminar sheet
flow and of the wave patterns developing on it. Finally, it defines the objectives of the
present experimental investigation. The experimental set-up and testing procedure are
described in § 3 and the results are discussed in § 4. Section 5 summarizes the main
conclusions.

2. Theoretical outline
This section is devoted to a summary of the theoretical background of the concepts

of local and global instability, as well as their application to plane sheet flows. Some
other physical considerations about the base laminar flow and the wave propagation
on the sheet interface will be also reported, together with the objective of the present
experiments and their design.

2.1. Absolute/convective and local/global instabilities

One of the major modern topics in the field of fluid dynamic instability is understand-
ing the link between local and global instability of non-parallel flows. It is known
that the concept of absolute and convective instability applies in principle only to
parallel flows, i.e. to flows invariant under continuous translations in the streamwise
direction. In physical terms, an absolutely unstable flow behaves as an oscillator, i.e. it
only needs a small impulse to develop time-growing oscillations at any fixed location.
The response of the system is intrinsic and independent of the initial impulse. A con-
vectively unstable flow behaves as a spatial amplifier of extrinsic noise and ultimately
returns to the undisturbed state if the external excitation is turned off (Bers 1975;
Huerre & Monkewitz 1990).

Many actual flows are not parallel. For these, if the base flow develops slowly in the
streamwise direction the classification of the instability as absolute or convective is
still valid, but only in a local sense. However, since in particular the local absolute in-
stability refers to a fictitious parallel mean flow, it cannot in general be experimentally
observed in a spatially developing flow and only the global properties are meaningful,
where following Huerre & Monkewitz (1990) the term global is used to mean that the
flow is stable or unstable with respect to infinitesimal fluctuations in the entire flow
field. A crucial point is to relate the local flow properties established theoretically
to the observed global behaviour of a non-parallel flow (the nonlinear effects of the
global instability are indeed observed in most laboratory experiments). This question
has been approached by Chomaz, Huerre & Redekopp (1988) under the assumption
that the base flow develops slowly in the streamwise direction (on the scale of the
instability wavelength). By using a model based on the Ginzburg–Landau equation,
some characteristics of global modes and their relation to local convective and ab-
solute instabilities have been illustrated. The basic finding (see also, among others,
Monkewitz 1990) is that local absolute instability may lead to global instability, but
the region of the absolute instability needs to be sufficiently long; conversely, convec-
tive instability corresponds to global stability, if boundary and long-range feedback
effects are negligible. Monkewitz (1988) showed that the sequence of transitions in the
wake of a cylinder, as the Reynolds number is raised, does indeed follow the sequence
of transitions in the model problem of Chomaz et al. (1988). Starting from the early
paper of Mathis, Provansal & Boyer (1984), several authors (referenced in Huerre
& Monkewitz 1990) identified the supercritical Hopf bifurcation to a global mode
and its final nonlinear saturation in the form of self-sustained oscillations commonly
referred to as the von Kármán vortex street.
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Figure 1. Liquid sheet flow under gravity.

Monkewitz et al. (1993) gave a more precise specification of the streamwise length
of absolute instability that is necessary before global modes become amplified: for the
semi-infinite flow domain global instability results whenever the interval of absolute
instability adjacent to the boundary grows as ∆Z = O(ε2/3), Z being the dimensionless
slow streamwise spatial coordinate and ε the parameter characterizing the degree of
spatial inhomogeneity (or non-parallelism) of the basic flow. It is worth pointing out
that this result refers to an incompressible two-dimensional shear flow investigated
under the assumption that the far-field pressure feedback between distant points in
the field is negligible. In the absence of body forces, the ε parameter is related to the
flow Reynolds number Re by ε = O(Re−1). Le Dizès (1997) proved the falling capillary
round jet to be globally unstable above the local absolute/convective transition, in
qualitative agreement with the conjecture made previously by Monkewitz (1990)
that the global transition may correspond to the transition to the dripping regime of
vertical round jets. Furthermore, the region of absolute instability necessary for global
instability, of O(ε1/2), in this case ε being linked to the Froude number, is found to
be larger than O(ε2/3) found for the semi-infinite shear flow.

2.2. Character of the instability of plane sheet flows

The main previous results concerned with the instability of liquid sheet flows have
been reviewed in the introduction section. Here it is also recalled that Lin (1981),
who employed a spatial modes approach, stated the sheet to be temporally stable but
spatially unstable for Weber number less than unity, namely for disturbances whose
group velocity is directed upstream. The pseudo-absolute instability found by Lin et
al. (1990) and the local absolute instability algebraic growth with time found in the
inviscid case by de Luca & Costa (1997b) have been already discussed.

It is worth pointing out that, contrary to previous papers, these last authors took
into account the gravity effects by introducing a slow scale for the vertical length,
and this allowed them to consider the flow as quasi-parallel or locally parallel. The
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sheet slenderness ratio

ε = b/S, (1)

where b is the half-width of the nozzle and

S = w2
0/2g, (2)

is the typical vertical length scale (w0 is the mean velocity at the nozzle exit section
and g is the gravity acceleration), was introduced as a small parameter relating
the slow spatial coordinate Z to the fast one z. If z∗ is the dimensional vertical
spatial coordinate, then z = z∗/b, Z = z∗/S , and Z = εz. The adopted Cartesian
coordinate system (x, y, z), x and y denoting the axial and lateral coordinates made
dimensionless with respect to b, is shown in figure 1. The problem was solved by
means of the multiple scale method, ε characterizing the degree of non-parallelism
of the flow. Introducing the flow Froude number, Fr = w2

0/2gb, it is ε = 1/Fr. For
sinuous anti-symmetric disturbances (displacing each of the free surfaces in the same
direction) a basic result was that a critical streamwise location Zcr , where the local
Weber number equals unity, separates a region of local absolute instability (which is
present upstream of Zcr and therefore downstream of the nozzle from which the sheet
originates) from a region of local convective instability. The local Weber number is
defined as

Weη =
ρw2η

σ
(3)

where w and η are the local sheet velocity and half-thickness, respectively, ρ is the
liquid density and σ its surface tension. If the flow Weber number is introduced,

We =
ρw2

0b

σ
(4)

the condition of Weη = 1 turns out to be We = η, where η = η/b is the dimensionless
sheet half-thickness. Thus, the transition from absolute to convective local instability
occurs where Weη = 1 or, alternatively, where We = η. By introducing the liquid
flow rate per unit length Q = 2w0b, the flow Weber number may be re-written as
We = ρQ2/4σb. It is easy to see that the vertical location Zcr at which the sheet
experiences the transition of instability moves downstream as the liquid flow rate is
reduced or the surface tension is increased. This finding is depicted in figure 2 where
a typical trend of the dimensionless sheet interface profile as a function of the slow
coordinate Z is reported. It is clear that if We2 < We1, then Zcr2 > Zcr1.

Following the theoretical developments of Chomaz et al. (1988), and the finding of
Le Dizès (1997), de Luca & Costa (1997b) hypothesized that the sheet behaves as a
globally unstable system (i.e. it breaks up) only if the region of absolute instability is
sufficiently long. This conjecture agrees perfectly with the experimental evidence that
the sheet breaks up as the flow rate is reduced (e.g. Brown 1961; de Luca & Meola
1995), all other quantities being kept constant. The local analysis allowed the authors
to state that the vertical spatial length of the absolute instability region is determined
by the location where the local Weber number equals unity, or equivalently where the
flow Weber number equals the dimensionless sheet thickness, but it cannot predict the
critical flow Weber number giving the rupture of the sheet. To do this it is necessary to
develop a global instability investigation, which is the subject of the present paper. In
the opinion of the present author this viewpoint goes beyond the major conclusions of
the previous literature, where for instance Teng et al. (1997) affirmed that ‘the manner
in which absolute instability leads to the highly non linear phenomenon of rupture
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Figure 2. Location of local absolute/convective transition along the sheet.

remains unknown’, and Söderberg & Alfredsson (1998) concluded that ‘in order to
fully understand the importance of the different modes of instability it is believed
that investigations should be undertaken which include effects of non-parallel flow
and the possibility for absolute instability’.

2.3. Laminar base flow and wave patterns

In principle, the free falling jet emanating from a nozzle belongs to the so-called
die-swell problem, but in the related literature gravity effects were often ignored.
Indeed, depending on the relative magnitudes of the gravitational and viscous forces,
the influence of the former on the jet shape may be very important (see, among
others, Ahn & Ryan 1991). In the limiting case of the absence of gravity the shape
of a Newtonian jet emerging from a die or nozzle strongly depends on the Reynolds
and capillary numbers: at relatively low Reynolds numbers the jet expands (swelling
effect), at high Reynolds the jet contracts, whereas the surface tension has the effect
of reducing both swelling and contraction. De Luca & Costa (1995) developed a
computational model in which inertia, viscous, gravity and surface tension forces
were all taken into account and showed that the inviscid inertia–gravity solution
is approached for jet Reynolds numbers greater than 50. Söderberg & Alfredsson
(1998) analysed numerically the influence of two shapes of the nozzle from which
the jet originates: the plane channel and the slit. While in the case of the channel
the jet emanating into an ambient gas (with negligible viscosity and density) relaxes
to eventually become uniform, the flow through the slit nozzle is essentially inviscid.
A viscous ambient gas also affects the velocity distribution in the jet, and because
of this the jet will never be uniform, but it will continue to expand. However, if the
viscosity and density of the gas are much lower than those of the liquid, this process
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Figure 3. Sketch of sinuous and varicose waves produced by an obstacle on the sheet interface.

is very slow. As will be discussed later, the nozzle shape employed in the experiments
described in the present paper is of the slit type.

The liquid sheet under gravity behaves as a non-homogeneous, non-isotropic,
dispersive and moving medium. It has long been known that two different kinds of
waves may develop on thin liquid sheets at any given frequency: sinuous and varicose
waves (Taylor 1950). Sinuous waves correspond to anti-symmetric disturbances which
displace each of the free surfaces in the same direction. On the other hand, symmetric
disturbances which displace the two interfaces in opposite directions give rise to
varicose waves. If the wave amplitude is assumed small, the wave-induced mass
transport is negligible and the theoretical study of the wave–current interaction can
be dealt with by specifying the current in advance. Surface-active agents in the liquid
may play an interesting role, as described earlier by Lin & Roberts (1981). These
authors also stated that for relatively long wavelengths the wave pattern does not
depend on the liquid viscosity.

Since the current is accelerating in the vertical direction, the parameters describing
the wave train should change greatly. However, de Luca & Costa (1997a) found that
if the length scale of the current variations is much longer than a typical wavelength,
one may assume that at any given point the waves have the same properties as a plane
wave train on a uniform current, and that the parameters describing the wave train,
namely wavelength and amplitude, change slowly with the current. The condition
under which (relatively long) sinuous waves occur is We > η. The angle θ between
the tangent to the curve of constant phase of sinuous waves and the vertical (figure 3)
can be predicted to be (Lin & Roberts 1981; Finnicum et al. 1993; de Luca & Costa
1997a)

θ = sin−1(1/
√
Weη). (5)

De Luca & Costa (1997a) also found that the flow acceleration in the vertical direction
causes both the wavelength and the amplitude to decrease downward.

2.4. Objective of the present experiments

The crucial part of the present work is the determination of the (vertical) location
adjacent to the nozzle exit section where the local Weber number equals unity,
Weη = 1, because this yields the extent of the absolute instability region. Such
a location is determined experimentally by observing the standing sinuous waves
generated by an obstacle (a stainless steel rod) placed normally to the sheet. Since the
obstacle creates sinuous waves having an angle θ between the tangent to the wave and
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the vertical given by (5), at the location sought it forms standing waves developing
locally horizontally (θ = 90◦). Thus, the location Zcr where Weη = 1 is determined, for
fixed flow conditions (in particular, for a given flow rate), by moving the rod vertically
up the sheet until the standing sinuous waves become horizontal. The position of
the rod yielding locally horizontal waves for the critical flow rate (minimum value
of the flow rate to maintain the sheet stable) finally gives the length ∆Z of the
absolute instability region linked to the global instability onset. Within this context
it is worth stressing that there is no theoretical connection between stationary waves
and absolute instability. The only practical link is that the position of the rod giving
locally horizontal sinuous waves at break-up flow rate corresponds to the length of the
absolute instability region and thus to the onset of global instability. The wide range
of possible flow regimes observed by varying the liquid flow rate has been summarized
in the Introduction, where a quick review of previous experimental observations has
been reported. For the present experiments the flow is considered stable when a two-
dimensional (i.e. the liquid adheres perfectly to the lateral plates of the experimental
set-up, as explained in detail in the next section) regular laminar (i.e. no ripples
or streaks are present on the liquid–air interface) liquid sheet can be observed. At
a certain critical flow rate it is no longer possible to maintain this flow regime,
but either ripples (sometimes more or less regular streaks) appear on the interface,
which may produce liquid detachment from the lateral plates (as observed in the case
of tests carried out with aqueous solutions of surfactants), or a sudden occurrence
of discrete vertical jets (sometimes mixed with a restricted sheet flow regime, which
is the case of the tests carried out with oil) are detected. In both cases at the critical
flow rate the sheet is considered unstable and one talks about sheet break-up; within
the present context such a break-up is considered to correspond to the onset of the
global instability.

The present testing procedure used to localize the vertical position where Weη = 1
has already been employed by Finnicum et al. (1993); however, these last authors
searched this location to determine a singularity point in the sheet profile. In the
present paper, on the other hand, the aim is to determine the transition from local
absolute to convective instability or, in other words, to measure the extent of the
region of the absolute instability for two-dimensional liquid sheets.

That the region of absolute instability has to reach a critical size for the onset
of global instability may be subject to criticism, because one might suspect that the
presence of only a local absolute instability is sufficient to make the flow break up.
This paper is the first experimental confirmation of such a contention within the
framework of liquid sheet flows.

3. Experimental set-up and testing procedure
The experimental set-up is basically that described in detail by de Luca & Meola

(1995) as well as by de Luca & Costa (1997a) and is reported in figure 4. The test
liquid from a tank goes through a regulating valve, a flow meter, a flexible tube,
a stagnation chamber and is spread out by means of a stainless steel nozzle. Two
lateral plates, placed at each end of the nozzle, facilitate the formation of the sheet
and guarantee the two-dimensionality of the base motion. In effect, gravity tends to
contract the bottom of the sheet, giving it a characteristic triangular shape (de Luca
& Meola 1995). Particular care is taken to eliminate any vibration source, control the
ambient air to be quite still, bleed the stagnation chamber, eliminate impurity from



364 L. de Luca

Pump

Tank

Vacuum
chamber

Flowmeter

Valve

Obstacle

Nozzle cross-section

2b

Figure 4. Experimental set-up.

the liquid, and ensure the levelling of the nozzle exit section. The liquid is collected
in a reservoir below the test section and then pumped back to the tank.

Systematic tests are carried out on liquid sheets issuing from a nozzle with a
horizontal exit section, 275 mm long, having five different discharge widths 2b rang-
ing from 0.6 to 2 mm. The test liquid consists of either low-concentration aqueous
solutions of surfactants (commercial shampoo or soap), or low-viscosity motor oil,
whose surface tension σ is 69.0 and 22.1 dyn cm−1, respectively. The nominal (or bulk)
surface tension of such solutions is measured by means of a stalagmometer. The liquid
density ρ and kinematic viscosity ν are also measured; ρ is 0.997 and 0.843 g cm−3,
while ν is about 1 and 28 cSt for solutions of surfactants and oil, respectively. It would
be possible to lower the nominal surface tension of the test liquid by adding to the
water an ever-growing amount of surface-active agent (surfactants). However, since
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the diffusion time of surfactants towards the liquid–air interface is much greater than
the typical descent time of liquid (de Luca & Meola 1995), the surface concentration
of surfactants is far from its equilibrium value. In other words, the bulk surface
tension of solutions appears practically unchanged when surfactants are added in
more quantity to the water.

Figure 4 depicts the detail of the nozzle exit section employed in the present
experiments. It is of the slit type and, following Söderberg & Alfredsson (1998),
the flow through it is essentially inviscid so that the free interface shape might
be estimated to a first approximation by the very simple inviscid inertia–gravity
(Torricellian) model

η =
η

b
=

1√
1 + z∗/S

, (6)

with z∗ measured from the nozzle exit. However, it is known that relatively close to
the nozzle the jet may enlarge (swelling effect), which is not taken into account by
the model (6). Recently de Luca & Costa (1995) numerically computed the liquid–air
interface profile with inertia, gravity, viscous, and surface tension effects all included.
It may be argued that for the sheet flow of water solutions of surfactants analysed
(where the Reynolds number based on the average inlet velocity and nozzle half-
width, Re = Q/(2ν), is of the order of 200, the Stokes number, St = Re/Fr, ranges
from 10 to 150 and the capillary number, Ca = We/Re, is of the order of 10−3)
equation (6) works quite well outside the so-called extrudate region (z > 3). However,
within this region the jet contracts more than predicted by the inviscid solution when
the surface tension effects are negligible (Ca = ∞), but surface tension reduces this
contraction and the jet enlarges compared with the shape given by equation (6) for
z < 3. On the other hand, in the case of tests using oil, the Reynolds number ranges
from 2 to 4, St and Ca are of the order of 1 and 10−1, respectively; thus the sheet
fully experiences the so-called swelling effect, and the inviscid profile is recovered well
outside the extrudate region when surface tension is important. As a consequence, for
both aqueous solutions of surfactants and (to a wider extent) oil the vertical location
where We = η, given a certain flow Weber number We, moves downstream with
respect to the value predicted by equation (6), as illustrated in figure 5. The swelling
effect will be taken into account later when the measurements of the extent of the
region of absolute instability will be discussed.

For a certain liquid and a fixed nozzle width, experiments generally start with
a relatively high value of liquid flow rate per unit length Q so as to prevent the
sheet instability. As mentioned in the previous section, a major goal of the present
tests is the determination of the (vertical) location adjacent to the nozzle exit section
where the local Weber number equals unity, Weη = 1, or equivalently, in terms of
flow Weber number, We = η, because this yields the extent of the absolute instability
region. Such a location is determined experimentally by observing the standing sinuous
waves generated by an obstacle (a stainless steel rod) placed normally to the sheet.
The rod is initially set at a position relatively far from the nozzle (typically 8–10 cm)
and is then moved upwards; for each rod position z∗ the angle θ of the sinuous
waves is measured. Of course, for relatively high liquid flow rates the flow Weber
number (namely, the local Weber number at nozzle exit section) is greater than unity
and θ < 90◦ at z∗ = 0. Using the regulating valve, the flow rate is decreased and a
different angle is obtained for each test condition (Q, z∗). If We < 1, locally horizontal
waves are detected at a certain z∗cr location, thus confirming that the sheet ‘is living’
in the presence of an absolute instability. The position of the rod that yields locally
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We = g

Z

equation (6)

Figure 5. Schematic representation of swelling effect.

horizontal waves for the nearly critical flow rate (minimum value of the flow rate to
maintain the sheet stable) finally gives the length ∆Z of the absolute instability region
as the distance of the rod position from the nozzle exit section. Of course, in practice
the value of the measured critical flow rate is a little higher than that corresponding
to the instability onset.

The waves are visualized by viewing the sheet plane with a digital video-camera
and by illuminating the sheet with lamps to enhance the contrast between crests
and troughs. Line scanning frequency is about 16 kHz. The camera is connected
to a computer displaying a 512 × 512 image of the sheet stored for further data
post-processing. The wave angle is measured via software on the recorded image
by computing the tangent to the sinuous wave at the obstacle. Reproducibility of
experimental results is checked both by averaging data taken on a time sequence of
images acquired during a certain test session and by repeating the test in a subsequent
session. Repeatability of data is very high. Care is taken to maintain the camera lens
axis normal to the sheet surface in order to minimize parallax errors. In order to
check the influence of the rod diameter on the measurements of the angles, a series of
systematic tests is also carried out. It is found that the measured angle is independent
of the rod diameter; data presented in this paper refer to a rod diameter of 2 mm.

4. Results
Some typical sinuous wave patterns are shown in figure 6 for oil and in figure 7 for

water solution; two different values of nozzle width (0.6 and 2 mm) and rod position
z∗ (1.5 and 5 cm) are considered (the rod cross-section is clearly recognisable). The
images of oil depict very clearly the pattern of only one pair of sinuous waves
departing from the rod; in general a very weak trace of varicose waves (much more
internal than the sinuous ones) is also visible. In agreement with previous experimental
findings of Lin & Roberts (1981) and de Luca & Costa (1997a), due to the relatively
strong viscosity dissipation effect, varicose waves are hardly detected at all. On the
other hand, for water solutions sinuous and varicose waves are both visualized: the
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2b = 0.6 mm,      Q =1.23 cm2 s–1 2b =2 mm,      Q =2.25 cm2 s–1

z*=1.5 cm

z*= 5 cm

Figure 6. Sinuous wave patterns for oil.

sinuous ones, restricted to a very small number of crests, exhibit the typical sharp
angle at the obstacle; the varicoses ones are characterized by the classic parabolic
shape and show a pattern of a relatively large numbers of crest, the vertex of which
protrudes above the rod. For fixed values of nozzle width (and of flow rate per unit
length) the images of figures 6 and 7 give a clear indication about the influence of
the position of the obstacle upon the angle of standing sinuous waves. The presence
of the gravitational field reduces the angle of the sinuous waves at the obstacle when
this latter is moved downstream.

In order to assess the accuracy of the measurements of the sinuous wave angles, first
a series of tests aimed at investigating the influence of the rod diameter is carried out.
During such tests, done for both water solutions and oil, for a fixed value of obstacle
diameter, rod position, nozzle width, and liquid flow rate are systematically varied.
As an example, for the water solution, the measured values of θ as a function of the
rod diameter φ are reported in figure 8 for z∗ = 2 cm, 2b = 1.2 mm, Q = 3.72 cm2 s−1.
Data points are scattered around the theoretical value of 46.8◦ within a 3% spread.
In the case of aqueous solutions the wave fan originates just above the obstacle for
smaller values of φ, which makes measuring the wave angle easier compared with the
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2b = 0.6 mm,     Q =2.83 cm2 s–1 2b =2 mm,     Q = 4.51 cm2 s–1

z*=1.5 cm

z*= 5 cm

Figure 7. Sinuous and varicose wave patterns for water solution.

situation occurring for higher rod diameters for which the waves appear to depart
from the rod trace on the recorded image. The upward displacement of the apex of
sinuous waves is not noticed during tests with oil. A good compromise value seems
to be φ = 2 mm, for which all tests are performed.

To localize the vertical position where Weη = 1, in principle it should be sufficient to
record the obstacle position z∗cr giving locally horizontal sinuous waves at the (critical)
flow rate of incipient sheet break-up (for each fixed test liquid and nozzle width).
However, especially for water solutions, this is not possible in practice because z∗cr is
generally very small (less than 5 mm) whilst for rod positions of about 10 mm and less
the presence of the varicose waves developing above the obstacle and interfering with
the nozzle exit section does not allow a precise visualization of the sinuous waves.
Thus, in order to estimate z∗cr at very small z∗ values, θ as a function of the position
of the rod is extrapolated from curves fitting the measured values. On the other hand,
for oil at the smallest values of nozzle width, it is possible to read z∗cr directly on the
recorded image, z∗cr being of the order of 10 mm. This is shown on the figure 9 where
one may read z∗cr = 9.15 mm for 2b = 0.6 mm and Qcr = 1.23 cm2 s−1.
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Figure 8. Influence of rod diameter on sinuous wave angle: water solution,
2b = 1.2 mm, z∗ = 2 cm, Q = 3.72 cm2 s−1.

Figure 9. Direct experimental determination of locally horizontal sinuous wave for oil:
2b = 0.6 mm, Q = 1.23 cm2 s−1.

In order to keep data accuracy under control, systematic comparisons are made
with the theoretical prediction of equation (5). As an example, experimental versus
theoretical θ values are reported in figures 10 and 11, for aqueous solutions and
oil, respectively. For the former, liquid data points refer to a fixed nozzle width and
various z∗ locations of the obstacle and flow rate values, for the latter z∗ is fixed while
nozzle width and flow rate are varied. Note that in both cases the agreement between
theoretical and experimental values is quite good.
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Figure 10. Experimental versus theoretical θ angles for water solution; 2b = 1.2 mm.
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Figure 11. Experimental versus theoretical θ angles for oil; z∗ = 3 cm.

Figure 12 depicts a typical determination of z∗cr via data extrapolation, for oil and
2b = 0.6 mm, Qcr ≈ Q = 1.24 cm2 s−1. Extrapolation is numerically computed by

means of data fitting based on the law θ = sin−1
(

1/

√
A
√

1 + z∗/B
)

, A and B being

regarded as fitting parameters to be determined by minimizing the root-mean-square
deviation. Note that for the case of figure 12 z∗cr corresponds to the minimum value of
the flow rate to maintain the sheet stable, i.e. to the instability (sheet break-up) onset.
The test conditions reported in figure 12 are chosen to compare the extrapolation
result with the direct measurement of z∗cr as illustrated by figure 9. Such a comparison,
when available, seems in general satisfactory.
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Figure 12. Determination of z∗cr via data fitting in the case of oil. Test conditions
are the same as in figure 9.
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Figure 13. Locus of vertical locations of unit local Weber number as a function of
flow Weber number.

The locus of dimensionless Zcr = z∗cr/S locations where Weη = 1 (i.e. We = η),
determined either via data extrapolation or directly from images, for both test liquids
and the different nozzle width values, is reported in figure 13 as a function of the flow
Weber number. Since it is conjectured that such Zcr values represent the length of the
absolute instability region at global instability onset, as stated previously, they are
denoted by ∆Z in figure 13. In reducing the data, flow Weber number is evaluated as
We = ρQ2/(4bσ) and the slow length scale S as S = Q2/(8gb2). Square symbols refer
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Figure 14. Length of the absolute instability region against sheet slenderness ratio,
limited to the water solutions tests.

to oil whilst circle symbols refer to water solutions. The continuous line represents
the theoretical prediction yielded by the equation

∆Z = 1/We2 − 1, (7)

which is obtained by assuming that the sheet interface shape may be represented by
the very simple inviscid inertia–gravity model of equation (6). Note that if such a
model were valid, ∆Z could be evaluated directly from the continuous line of figure 13
by entering the experimental We value evaluated at sheet break-up. Indeed all the
experimental data points lie above the curve (7), more so for tests carried out with
oil. This occurrence may be explained by the swelling effect experienced by the plane
jet relatively close to the nozzle exit, already discussed in § 3 with the aid of figure 5.

Following the theoretical developments of Chomaz et al. (1988), based on a
rather general Ginzburg–Landau model, Monkewitz et al. (1993), relating to a two-
dimensional shear flow, and Le Dizès (1997), concerning the falling capillary round
jet flow, the dimensionless ∆Z values of figure 13 will be hereafter correlated with the
non-parallelism parameter ε. Remember that for the present problem the ε parameter
has been defined in § 2.2 as ε = b/S , namely ε = 2gb/w2

0 , and so it may be interpreted
as the reciprocal of the Froude number, ε = 1/Fr. In reducing the experimental data
ε is evaluated as ε = 8gb3/Q2. Figure 14 reports such a correlation of ∆Z with ε
restricted to aqueous solution data points only; since for this test liquid the flow
Reynolds number based on the sheet half-thickness, Re = Q/(2ν) is of the order of
200, the flow regime may be considered practically inviscid and a dependence of ∆Z
on ε alone is expected (Le Dizès 1997). The equation of the correlation curve which
fits present measurements is (full line)

∆Z = 3.76 ε0.75. (8)

Note that the region of absolute instability necessary for global instability of plane
liquid sheets appears, in its inviscid limit, to be smaller than in the other studies:
compare O(ε0.75) with O(ε2/3) which is the result of Monkewitz et al. (1993), and O(ε1/2)
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Figure 15. Correlation of the length of the absolute instability region with
sheet slenderness ratio and Reynolds number.

which was obtained by Le Dizès (1997). This last author proved theoretically that the
global modes are composed of three local plane waves interacting at the so-called
turning point; the spatial structure of the global modes is prescribed at leading order
by the local dispersion relation that defines the local stability properties. The (three)
spatial branches of the local dispersion relation give the corresponding wavenumbers
of the local plane waves approximating the global mode in the case of round capillary
jet. For weakly non-parallel shear flows Monkewitz et al. (1993) found that two local
plane waves interact at the turning point giving rise to a global mode, because for this
class of flows the local dispersion relation is particularly simple and reduces to a single
temporal branch with two spatial branches. Thus, in other words, the global dynamics
is governed by a Ginzburg–Landau type equation in the direction of propagation of
the local waves. For both the flows analysed above the quantities characterizing the
global modes (such as global growth rate, critical value of the governing parameter
for global transition, length of the region of absolute instability) are correlated with
the non-parallelism parameter by a power function of ε whose exponent is strictly
linked to the structure of the relevant dispersion relation. Of course, a theoretical
confirmation of the present experimental results for a two-dimensional liquid sheet
flow will require the development of a global stability analysis for this class of flows.

Following Le Dizès (1997), figure 15 depicts the correlation of ∆Z with both Fr
(namely ε) and Re for all experimental data. Those referring to oil, for which sheet
break-up Re ranges approximately from 2 to 4, show a marked decreasing trend;
a nearly constant (inviscid) asymptotic trend is approached by data points of the
water solution. Note that the exponent 0.75 determined by the fitting of figure 14 is
employed in the present correlation.

Figure 16 reports the final correlation of the three control parameters, We, ε, and
Re, evaluated at the flow rate of sheet break-up, i.e. as conjectured in the present
paper at the onset of global instability, for the two test liquids and the different nozzle
widths. Since the unitary value of We may be interpreted as the threshold value for the
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Figure 16. Correlation of the three control parameters We, ε and Re evaluated at
flow rate of sheet break up (global instability onset).

local absolute/convective transition at the nozzle exit, the quantity 1−We represents
how much the critical Weber for the global transition is below the critical Weber for
the absolute/convective transition. Figure 16 is a synthesis of the experimental global
instability analysis as developed in § 2.2 and may be used to predict the break-up flow
Weber number as a function of Froude and Reynolds numbers. As found in figure 15,
data for oil exhibit a marked decreasing trend, while those for water solutions seem
to approach a nearly constant inviscid asymptotic limit. For the present case of plane
liquid sheets the two critical Weber numbers differ by a factor of the order of ε0.75,
while for the round vertical jet Le Dizès (1997) found a factor of the order of ε0.5.

5. Conclusions
The global stability of two-dimensional vertical liquid sheet flows is experimentally

investigated. The work is motivated by the fact that previous investigations addressed
the study of the local absolute/convective character of such flows, namely they yield
the critical local Weber number for the absolute/convective transition but are not
able to predict the actual critical Weber number corresponding to the sheet rupture.
Following previous theoretical findings on the local stability of plane liquid sheets
and an analogous theoretical investigation concerned with the case of vertical round
jets, three control parameters are considered: Weber, Froude and Reynolds numbers.
The reciprocal of the Froude number is also employed as measure of the degree of
non-parallelism of the flow and may be regarded as the sheet slenderness ratio.

Experimental tests are performed on two test liquids: water solutions of surfactants
and oil. For each liquid five values of the width of the nozzle exit section, from which
the sheet issues, are considered and for each test condition the break-up liquid flow
rate is measured. First, in order to investigate the link between local absolute and
global instability properties, the length of the absolute instability region is measured.
Tests are carried out on liquid sheets issuing from a nozzle with a long horizontal exit
section in still air under the gravitational field. The key part is the determination of
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the vertical location where the local Weber number equals unity, because this yields
the extent of the absolute instability region. This location is determined by observing
the standing sinuous waves generated by an obstacle (namely a rod) placed normally
to the sheet, and by measuring the angle between the tangent to the wave at the
obstacle and the vertical direction. Transition from absolute to convective instability
occurs along the sheet at the vertical location where the flow Weber number equals
the dimensionless sheet half-thickness. Here the angle between the tangent to the
wave at the obstacle and the vertical is 90◦. The extent of the absolute instability
region is given by this location at the onset of instability, i.e. for the minimum value
of liquid flow rate to maintain the sheet stable.

A first qualitative result is that the sheet ‘can live’ in the presence of a region
of absolute instability. Thus an experimental confirmation of the basic theoretical
finding of Chomaz et al. (1988) is given, namely that self-sustained resonances (global
instability) may appear when the system exhibits a region of local absolute instability
which is sufficiently large. Remember that these authors refer to a quite different
framework, that of an incompressible two-dimensional non-parallel shear flow.

For tests with water solutions it is found that the dimensionless absolute instability
interval increases with increasing sheet slenderness ratio as ε0.75. The Reynolds number
is of the order of 200 and results obtained with water solutions may be assumed as
the asymptotic inviscid limit. Data points for oil, for which sheet break-up Re ranges
approximately from 2 to 4, on the other hand show a marked decreasing trend. Note
that the region of absolute instability necessary for global instability of plane liquid
sheets appears, in its inviscid limit, to be smaller than in the other studies: compare
O(ε0.75) with O(ε2/3) which is the result of Monkewitz et al. (1993), and O(ε1/2) which
was obtained by Le Dizès (1993). This could be related to the order of the pinch-type
singularity exhibited by the relevant dispersion relation.

The experimental global instability analysis is synthesized in a plot where the break-
up flow Weber number (i.e. We evaluated for the minimum flow rate to maintain
the sheet stable) is correlated to Froude and Reynolds numbers. Again, data for oil
exhibit a marked decreasing trend of (1−We)/ε0.75 as a function of Re, while those for
water solutions seem to approach a nearly constant inviscid asymptotic limit. Thus,
for the present case of plane liquid sheets the critical Weber for absolute/convective
instability (equal to unity) and the critical Weber for global transition differ by a
factor of the order of ε0.75, while for the round vertical jet Le Dizès (1997) found a
factor of the order of ε0.5.

A theoretical model investigating the global stability behaviour of vertical plane
sheet flows is currently under study and will be the subject of a subsequent paper,
where nonlinear effects will also be analysed.

The technical assistance of Dr Carosena Meola in designing the experimental set-up
and of Carmen Bosso and Andrea Bianco in performing the experimental tests is
gratefully acknowledged.
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Söderberg, L. D. & Alfredsson, P. H. 1998 Experimental and theoretical stability investigations
of plane liquid jets. Eur. J. Mech. B/Fluids 17, 689–737.

Squire, H. B. 1953 Investigation of the instability of a moving liquid film. Brit. J. Appl. Phys. 4,
167–169.

Taylor, G. I. 1950 The dynamics of thin sheets of fluid – III. Disintegration of fluid sheets. Proc. R.
Soc. Lond. A 253, 313–321.

Teng, C. H., Lin, S. P. & Chen, J. N. 1997 Absolute and convective instability of a viscous liquid
curtain in a viscous gas. J. Fluid Mech. 332, 105–120.

Yakubenko, P. A. 1997 Global capillary instability of an inclined jet. J. Fluid Mech. 346, 181–200.


